

Deutsche Akkreditierungsstelle

Anlage zur Teil-Akkreditierungsurkunde D-K-11081-02-01 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 20.12.2022 Ausstellungsdatum: 17.01.2023

Diese Urkundenanlage ist Bestandteil der Akkreditierungsurkunde D-11081-01-00.

Inhaber der Teil-Akkreditierungsurkunde:

DB Systemtechnik GmbH Messprozesse, Kalibrier- und Prüfstelle Emilienstraße 45, 09131 Chemnitz

Das Kalibrierlaboratorium erfüllt die Mindestanforderungen gemäß DIN EN ISO/IEC 17025:2018 und gegebenenfalls zusätzliche gesetzliche und normative Anforderungen, einschließlich solcher in relevanten sektoralen Programmen, um die nachfolgend aufgeführten Konformitätsbewertungstätigkeiten durchzuführen.

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Diese Urkundenanlage gilt nur zusammen mit der schriftlich erteilten Urkunde und gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de)

Verwendete Abkürzungen: siehe letzte Seite Seite Seite 1 von 9

Kalibrierungen in den Bereichen:

Dimensionelle Messgrößen

Länge

Parallelendmaße ^{a)}

Koordinatenmesstechnik

Virtuelle Koordinatenmessgeräte

Elektrische Messgrößen

Gleichstrom und Niederfrequenz

- Gleichspannung
- Gleichstromstärke
- Gleichstromwiderstand
- Wechselspannung^{a)}
- Wechselstromstärke
- Spannungsverhältnis

Zeit und Frequenz

- Frequenz und Drehzahl a)
- Zeitintervall

Hochfrequenz- und Strahlungsmessgrößen

Hochfrequenzmessgrößen

- Oszilloskopmessgrößen
- Anstiegszeit

Innerhalb der mit * gekennzeichneten Akkreditierungsbereiche ist dem Kalibrierlaboratorium, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf, die Anwendung hier aufgeführten Normen/Kalibrierichtlinien mit unterschiedlichen Ausgabeständen gestattet.

Das Kalibrierlaboratorium verfügt über eine aktuelle Liste aller Normen/Kalibrierichtlinien im flexiblen Akkreditierungsbereich.

a) auch als Vor-Ort-Kalibrierung

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		sbereich / ssspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge Parallelendmaße * aus Stahl nach DIN EN ISO 3650:1999	0,5 mm	bis 100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 3.1:2004 in den Nennmaßen der Normale; Messung der Abweichung des Mittenmaßes l_c vom Nennmaß l_n durch Unterschiedsmessung Messung der Abweichungen f_o und f_u vom Mittenmaß durch 5-Punkte- Unterschiedsmessung	Für das Mittenmaß: 0,08 μm + 0,7 · 10 ⁻⁶ · <i>l</i> Für die Abweichungen <i>f</i> ₀ und <i>f</i> _u vom Mittenmaß: 0,07 μm	l = Länge des Maßes Messflächenqualität entsprechend den Festlegungen im QMH bzw. in den Arbeitsanweisungen. Für die kleinsten Mess- unsicherheiten sind Anschiebbarkeit und Anschubmerkmale beider Messflächen des Kalibriergegenstandes mit einer geeigneten Planglasplatte zu prüfen.
Gleichstrom- und Nieder- frequenz Gleichspannung	10 mV 100 mV 0,12 V 1,2 V 12 V 120 V	bis < 12 V bis < 120 V bis 1 kV		0,35 μ V + 30 · 10 ⁻⁶ · U 0,35 μ V + 14 · 10 ⁻⁶ · U 0,35 μ V + 9 · 10 ⁻⁶ · U 0,58 μ V + 8,5 · 10 ⁻⁶ · U 35 μ V + 12 · 10 ⁻⁶ · U 0,12 μ V + 13 · 10 ⁻⁶ · U 3,2 V + 50 · 10 ⁻⁶ · U 5,2 V + 1,1 · 10 ⁻³ · U	U = Messwert
Gleichstromstärke	0,12 A	bis < 120 µA bis < 1,2 mA bis < 12 mA bis < 120 mA		0,1 · 10^{-3} · I 0,92 nA + 27 · 10^{-6} · I 5,8 nA + 27 · 10^{-6} · I 58 nA + 27 · 10^{-6} · I 0,58 μ A + 43 · 10^{-6} · I 12 μ A + 0,13 · 10^{-3} · I 0,17 · 10^{-3} · I	I = Messwert
Gleichstromwiderstand		30 μΩ 0,1 mΩ 1 mΩ 10 mΩ .00 mΩ 1 Ω 1,9 Ω 10 Ω		$0,4 \cdot 10^{-3} \cdot R$ $0,18 \cdot 10^{-3} \cdot R$ $46 \cdot 10^{-6} \cdot R$ $0,14 \cdot 10^{-3} \cdot R$ $0,14 \cdot 10^{-3} \cdot R$ $30 \cdot 10^{-6} \cdot R$ $51 \cdot 10^{-6} \cdot R$ $26 \cdot 10^{-6} \cdot R$	R = Messwert

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messk	pereich / spanne	Messbe		gungen /	Erweiterte Messunsicherheit	Bemerkungen
Gleichstromwiderstand Widerstände,	30 μΩ l 0,12 mΩ l	ois < 120 μΩ ois < 1,2 mΩ			<u></u>	9 n Ω + 0,1 · 10 ⁻³ · R 8 n Ω + 0,1 · 10 ⁻³ · R	R = Messwert
Messgeräte	12 mΩ l	0 is < 12 mΩ 0 is < 120 mΩ 0 is $< 1,2$ Ω				50 nΩ + 0,13 · 10 ⁻³ · R 0,9 μΩ + 0,13 · 10 ⁻³ · R 6 μΩ + 74 · 10 ⁻⁶ · R	
	12 Ω	ois < 12 Ω ois < 120 Ω				58 μΩ + 20 · 10 ⁻⁶ · R 0,58 mΩ + 17 · 10 ⁻⁶ · R	
	1,2 kΩ l	ois < 1,2 kΩ ois < 12 kΩ ois < 120 kΩ				0,58 mΩ + 14 · 10 ⁻⁶ · R 5,8 mΩ + 14 · 10 ⁻⁶ · R 58 mΩ + 14 · 10 ⁻⁶ · R	
	1,2 MΩ l	ois < 1,2 MΩ ois < 12 MΩ ois 100 MΩ				2,3 Ω + 20 · 10 ⁻⁶ · R 12 Ω + 59 · 10 ⁻⁶ · R 120 Ω + 0,58 · 10 ⁻³ · R	
Wechselspannung		ois < 12 mV	10 Hz > 40 Hz	bis	40 Hz 1 kHz	4 μ V + 0,36 · 10 ⁻³ · U 3 μ V + 0,25 · 10 ⁻³ · U	U = Messwert
	42	-i 120 V	> 1 kHz > 20 kHz	bis	20 kHz 50 kHz	$3 \mu V + 0.36 \cdot 10^{-3} \cdot U$ $3 \mu V + 1.2 \cdot 10^{-3} \cdot U$	-
	12 mV 1	ois < 120 mV	10 Hz > 40 Hz > 1 kHz > 20 kHz	bis bis	40 Hz 1 kHz 20 kHz 50 kHz	5 μ V + 93 · 10 ⁻⁶ · U 3 μ V + 93 · 10 ⁻⁶ · U 3 μ V + 0,17 · 10 ⁻³ · U 3 μ V + 0,35 · 10 ⁻³ · U	
	0,12 V k	ois < 1,2 V	10 Hz > 40 Hz > 1 kHz > 20 kHz	bis	40 Hz 1 kHz 20 kHz 50 kHz	52 μ V + 90 · 10 ⁻⁶ · U 33 μ V + 83 · 10 ⁻⁶ · U 33 μ V + 0,17 · 10 ⁻³ · U 33 μ V + 0,35 · 10 ⁻³ · U	
	1,2 V k	ois < 12 V	10 Hz > 40 Hz > 1 kHz > 20 kHz	bis	40 Hz 1 kHz 20 kHz 50 kHz	$\begin{array}{c} 0.52 \text{ mV} + 90 \cdot 10^{\text{-}6} \cdot U \\ 0.33 \text{ mV} + 83 \cdot 10^{\text{-}6} \cdot U \\ 0.33 \text{ mV} + 0.17 \cdot 10^{\text{-}3} \cdot U \\ 0.33 \text{ mV} + 0.35 \cdot 10^{\text{-}3} \cdot U \end{array}$	
	12 V k	ois < 120 V	> 40 Hz	bis bis	20 kHz	$\begin{array}{c} \text{5,2 mV} + \text{0,24} \cdot \text{10}^{\text{-}3} \cdot U \\ \text{3,3 mV} + \text{0,24} \cdot \text{10}^{\text{-}3} \cdot U \\ \text{3,3 mV} + \text{0,24} \cdot \text{10}^{\text{-}3} \cdot U \\ \text{3,3 mV} + \text{0,41} \cdot \text{10}^{\text{-}3} \cdot U \end{array}$	
	120 V k	ois < 330 V	45 Hz > 1 kHz > 20 kHz	bis	1 kHz 20 kHz 50 kHz	52 mV + 0,47 \cdot 10 ⁻³ \cdot <i>U</i> 33 mV + 0,7 \cdot 10 ⁻³ \cdot <i>U</i> 33 mV + 1,4 \cdot 10 ⁻³ \cdot <i>U</i>	
	330 V k	ois 1 kV	45 Hz	bis	10 kHz	33 mV + 0,7 \cdot 10 ⁻³ \cdot U	
	1 kV k > 1,1 kV k	ois 1,1 kV ois 7 kV	50 Hz			2,2 V + 0,74 \cdot 10 ⁻³ \cdot U 1,6 V + 1,7 \cdot 10 ⁻³ \cdot U	
	_,		l				<u> </u>

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		ssbereich / sssspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselstromstärke	100 μΑ	bis < 120 μA	20 Hz bis < 45 Hz 45 Hz bis 1 kHz	35 nA + 1,8 · 10 ⁻³ · <i>I</i> 35 nA + 0,71 · 10 ⁻³ · <i>I</i>	I = Messwert
	0,12 mA	bis < 1,2 mA	20 Hz bis < 45 Hz 45 Hz bis 100 Hz > 100 Hz bis 1 kHz > 1 kHz bis 5 kHz	0,24 μ A + 1,8 · 10 ⁻³ · I 0,24 μ A + 0,71 · 10 ⁻³ · I 0,24 μ A + 0,37 · 10 ⁻³ · I 0,24 μ A + 0,4 · 10 ⁻³ · I	
	1,2 mA	bis < 10 mA	20 Hz bis < 45 Hz 45 Hz bis 100 Hz > 100 Hz bis 1 kHz > 1 kHz bis 5 kHz	2,4 μ A + 1,8 \cdot 10 ⁻³ \cdot <i>I</i> 2,4 μ A + 0,71 \cdot 10 ⁻³ \cdot <i>I</i> 2,4 μ A + 0,37 \cdot 10 ⁻³ \cdot <i>I</i> 2,4 μ A + 0,4 \cdot 10 ⁻³ \cdot <i>I</i>	
	10 mA	bis 2 A	10 Hz bis 10 kHz	0,55 · 10 ⁻³ · <i>I</i>	
	> 2 A	bis 11 A	40 Hz bis 10 kHz	0,55 · 10 ⁻³ · <i>I</i>	
Spannungsverhältnis DMS-Messverstärker und Anzeigegeräte	- 2,5 mV/V	bis + 2,5 mV/V	,	0,04 μV/V	Brückennormal mit 225 Hz Messfrequenz und 5 V Brückenspeisespannung
	- 10 mV/V	+ 10 mV/V		1,2 μV/V	Gleichspannung und 2,5 V Brückenspeisespannung
	- 10 mV/V	+ 10 mV/V	,	2,0 μV/V	4,8 kHz Messfrequenz und 2,5 V Brückenspeisespannung
Zeit und Frequenz Frequenz	10 Hz	bis 6 GHz	Digitale Zählerfrequenz- messung (Sinussignal)	$(4 \cdot 10^{-9} + U_{\mathrm{Tf}}) \cdot f$	f = Messwert U_{Tf} = 0,003 / $(T_{\mathrm{M}} \cdot f)$ U_{Tf} = Triggerunsicherheit T_{M} = Messzeit (100 s bis 2 s)
	1 Hz	bis 100 kHz	Digitale Zählerfrequenz- messung (Rechtecksignal)	$(4 \cdot 10^{-9} + U_{\rm Tf}) \cdot f$	f = Messwert U_{Tf} = 1 \cdot 10 ⁻⁷ / ($T_{\mathrm{M}} \cdot f$) U_{Tf} = Triggerunsicherheit T_{M} = Messzeit (100 s bis 2 s)
Zeitintervall	1 ms	bis 1000 s	Pulsbreitenmessung	$(4 \cdot 10^{-9} + U_{\mathrm{Tt}}) \cdot t$	t = Messwert U_{Tt} = Triggerunsicherheit U_{Tt} = 5 \cdot 10 $^{-8}$ / T_{G} T_{G} = Gatezeit in s
Drehzahl Quellen	10 min ⁻¹	bis 4000 min ⁻¹	Achsimpulsgeber	$0,24 \text{ min}^{-1} + 0,12 \cdot 10^{-3} \cdot n$	n = aktueller Messwert

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Oszilloskopmessgrößen Vertikalablenkung (DC)	100 mV bis 200 V 100 mV bis 5 V	1 MΩ 50 Ω	4,6 · 10 ⁻³ · <i>U</i>	U = Messwert
Vertikalablenkung (AC)	5 mV bis 200 V 5 mV bis 5 V	Rechteckspannung, f = 1 kHz 1 M Ω 50 Ω	$5\cdot 10^{-3}\cdot U$	
Horizontalablenkung	1 ns bis 5 s		1,3 · 10^{-3} · Δt	Δt = Messwert
Anstiegszeit	> 200 ps	1 MΩ und 50 Ω mit Pulskopf	12 ps + 2,4 \cdot 10 ⁻² \cdot t_r	t _r = Messwert

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Kalibrier- und Messmöglichkeiten (CMC)				
Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Koordinatenmesstechnik	•			
Prismatische Messobjekte	Koordinatenmessgerät mit einem für die Durchführung des Kalibrierverfahrens spezifizierten Messvolumens mit den Abmessungen: X = 3000 mm Y = 2000 mm Z = 1600 mm (die Angaben X, Y, Z bezeichnen die Koordinatenachsen in Herstellernotation) Kalibrierungen werden mit kugel- und zylinderförmigen Antastelementen mit Durchmessern im Bereich 0,3 mm bis 16 mm durchgeführt.		Die Ermittlung der Messunsicherheit erfolgt gemäß ISO/TS 15530-4:2008 "Evaluating task-specific measurement uncertainty using simulation" unter Anwendung des Verfahrens "Virtuelles Koordinatenmessgerät". Die Messunsicherheit für bidirektionale Längenmessungen an Prüfkörpern aus Stahl in Messpositionen gemäß DIN EN ISO 10360-2:2010 beträgt im spezifizierten Messvolumen für zentrale Taststifte (Abstand null der Tastkugelmitte von der Pinolenachse) maximal: $U_{\rm E0} = 2~\mu \text{m} + 2,5 \cdot 10^{-6} \cdot L$ und für Messungen mit seitlichen Taststiften (Abstand 150 mm der Tastkugelmitte von der Pinolenachse) maximal: $U_{\rm E150} = 2~\mu \text{m} + 2,5 \cdot 10^{-6} \cdot L$ Die kleinste angebbare Messunsicherheit für bidirektionale Längenmessungen an Prüfkörpern aus Stahl der Länge L beträgt im spezifizierten Messvolumen: $L = 100~\text{mm}~U = 1,6~\mu \text{m}~L = 100~\text{mm}~U = 2,3~\mu \text{m}~L = 1000~\text{mm}~U = 2,3~\mu \text{m}~L = 1000~\text{mm}~U = 18~\mu \text{m}~L = 3000~\text{mm}~U = 33~\mu \text{m}~L = 3000~\text{mm}~U = 30~\text{m}~L = 3000~\text{mm}~U =$	L = gemessene Länge Die Messunsicherheit ist aufgabenspezifisch. Daher kann keine kleinste angebbare Messunsicherheit für beliebige Messaufgaben spezifiziert werden. Die hier angegebenen Messunsicherheiten gelten beispielhaft für die jeweils beschriebenen Messaufgaben. Für allgemeine Messaufgaben gemäß Akkreditierungsumfang können sich deutlich abweichende Messunsicherheiten ergeben. Die im Kalibrierschein angegebene Messunsicherheit bezieht sich nur auf die verwendete Messund Auswertestrategie. Dazu gehören Messpunktverteilung, Filterungen der Messwerte und Ausreißerelimination. Die Mess- und Auswertestrategie wird im Kalibrierschein explizit dokumentiert. Die Größe der zu erwartenden aufgabenspezifischen Messunsicherheit kann auf Basis eines Prüfplans von dem Laboratorium vor Beginn der Messungen abgeschätzt werden.

Gültig ab: 20.12.2022 Ausstellungsdatum: 17.01.2023 Seite 7 von 9

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

	i e		i ,	
Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Prismatische Messobjekte	Koordinatenmessgerät mit einem kalibrierten Mess- volumen von: X = 3000 mm Y = 2000 mm Z = 1600 mm		Die Messunsicherheit für Durchmesser- und Formmessungen an einer Kugel aus Stahl mit Nenndurchmesser 25 mm im Scanning-Modus, gemessen mit einer Messstrategie gemäß DIN EN ISO 10360-5:2020, beträgt im spezifizierten Messvolumen: für die Bestimmung der Formabweichung (Auswertung nach Tschebyschew) $U=0.9~\mu m$ für die Bestimmung des Durchmessers (Auswertung nach Gauß) $U=0.9~\mu m$	Die angegebenen Messunsicherheiten für den Scanning-Modus wurden unter Berücksichtigung eines Wellenfilters nach DIN EN ISO 16610-21:2013 mit einer Grenzwellenlänge von 150 W/U ermittelt.

Vor-Ort-Kalibrierung

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselspannung	1 kV bis 1,1 kV	50 Hz	4,4 V + 2,4 \cdot 10 ⁻³ \cdot U	U = Messwert
	> 1,1 kV bis 7 kV		6,5 V + 2,9 \cdot 10 ⁻³ \cdot U	
Drehzahl	10 min ⁻¹ bis 4000 min ⁻¹	mit Achsimpulsgeber	$0,24 \mathrm{min^{-1}} + 0,12 \cdot 10^{-3} \cdot n$	n = Messwert

Vor-Ort-Kalibrierung

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messber Messspa	-	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Länge Messgleise	0 mm bis	50 mm	DB/P_1860:2022-05 Grenzwerte nach:	0,10 mm	Nivellierte Höhenlage Schienenoberkante ohne Stationswechsel
	0 mm bis	50 mm	DIN 27202-10:2019 DIN 25043-2:2019 DIN EN 15654-2:2019	0,15 mm	Nivellierte Höhenlage Schienenoberkante mit Stationswechsel
	0 mm bis	50 mm		0,25 mm	Geradheit Schienenstrang ohne Stationswechsel
	0 mm bis	50 mm		0,40 mm	Geradheit Schienenstrang mit Stationswechsel
	0 mm bis	50 mm		0,20 mm	Geradheit Gleismittelachse ohne Stationswechsel
	0 mm bis	50 mm		0,40 mm	Geradheit Gleismittelachse mit Stationswechsel
	1420 mm bis	1480 mm		0,15 mm	Spurweite des Messgleises
	-5 mm bis	5 mm		0,02 mm	Verformung unter Lasteinfluss bei frei zugänglichem Schienenfuss
	-2 mm bis	2 mm		0,06 mm	Verformung unter Lasteinfluss

Verwendete Abkürzungen:

CMC	Calibration and measurement capabilities (Kalibrier- und Messmöglichkeiten)
-----	---

DIN Deutsches Institut für Normung e.V.

DB/P Kalibrieranweisung der DB Systemtechnik GmbH

DGQ Deutsche Gesellschaft für Qualität e.V.

DKD Deutscher Kalibrierdienst (DKD)

VDE Verband der Elektrotechnik, Elektronik und Informationstechnik e.V.

VDI Verein Deutscher Ingenieure e.V.

Gültig ab: 20.12.2022 Ausstellungsdatum: 17.01.2023

Seite 9 von 9