Deutsche Akkreditierungsstelle GmbH

Annex to the Accreditation Certificate D-PL-17442-01-00 according to DIN EN ISO/IEC 17025:2005

Holder of certificate:

Labor Dr. Fülling GmbH & Co. KG
Remscheider Straße 178, 42899 Remscheid

Tests in the fields:

- physical, physico-chemical and chemical analysis of water (waste water, surface water), sludges, sediments, soils, waste, materials for recycling, commodities, cosmetic and pharmaceutical excipients, organic and inorganic chemicals, oils, pigments, paints, varnishes, plastics;
- microbiological analysis of water;
- sampling of waste water, from swimming pool and bathing pool water, soils, waste and materials for recycling;
- chemical and microbiological analysis in accordance with the German Drinking Water Ordinance, sampling of raw and drinking water;
- analysis of water according to the German Ordinance on evaporative cooling systems, cooling towers and wet separators (42nd BImSchV);
- specialist module for waste

Abbreviations used: see last page
The laboratory is permitted to use the standard test methods set out in sections 1 to 6 or equivalent methods with different versions of the standards without obtaining prior notification and consent from Deutsche Akkreditierungsstelle GmbH.

For the test fields marked with */**, the laboratory is also permitted to do the following without obtaining prior notification and consent from Deutsche Akkreditierungsstelle GmbH

*) Freely select standard test methods or equivalent test methods
**) Modify test methods and develop new test methods

The test methods listed are given by way of example. The laboratory has an up-to-date list of all test methods within the flexible scope of accreditation.

structure:

1 Analysis of water (waste water, surface water)
2 Analysis of sludge, sediments, soil, waste and materials for recycling
3 Examination of chemical products
4 Analysis of consumer goods
5 Test methods in accordance with the Drinking Water Ordinance – TrinkwV –
6 Analysis of water according to the German Ordinance on evaporative cooling systems, cooling towers and wet separators (42nd BImSchV)
7 Test method list for SPECIALIST MODULE FOR WASTE, Revised: August 2012
1 Analysis of water (waste water, surface water)

1.1 Sampling and sample pretreatment

- DIN 38402-A 11 2009-02: Sampling of waste water
- DIN 38402-A 19 1988-04: Sampling of swimming pool and bathing pool water (standard withdrawn)
- DIN EN ISO 5667-3 (A 21) 2013-03: Water quality - Sampling - Part 3: Preservation and handling of water samples
- DIN 38402-30 (A 30) 1998-07: Pretreatment, homogenisation and aliquotation of non-homogeneous water samples
- DIN EN ISO 19458 (K 19) 2006-12: Water quality – Sampling for microbiological analysis
- twin Nr. 10 DVGW 2015-03: Instructions for sampling from water meters to microbiological analysis for Pseudomonas aeruginosa

1.2 Sensory test

- DIN EN 1622 (B 3) 2006-10: Water quality - Determination of the threshold odour number (TON) and threshold flavour number (TFN) (modification: qualitative test)

1.3 Physical and physico-chemical parameters

- DIN EN ISO 7887 (C 1) 2012-04: Examination and determination of colour
Annex to the accreditation certificate D-PL-17442-01-00

DIN EN ISO 7027 (C 2) Water quality – Determination of turbidity
2000-04

DIN 38404-C 3 Determination of absorption in the range of UV radiation, spectral
2005-07 absorption coefficient

DIN 38404-C 4 Determination of temperature
1976-12

DIN EN ISO 10523 (C 5) Determination of pH
2012-04

DIN 38404-C 6 Determination of the oxidation reduction (redox) potential
1984-06

DIN EN 27888 (C 8) Water quality – Determination of electrical
1993-11 conductivity

1.4 Non-metals, anions

1.4.1 Determination by ion-selective electrode

DIN 38405-D 4-1 Determination of fluoride by fluoride ion-selective electrode
1985-07

1.4.2 Determination by ion chromatography

DIN EN ISO 10304-1 (D 20) Water quality – Determination of dissolved anions by liquid
2009-07 chromatography of ions – Part 1: Determination of bromide,
chloride, fluoride, nitrate, nitrite, phosphate and sulphate

1.4.3 Determination by photometry *

DIN EN 26777 (D 10) Determination of nitrite; spectrometric method
1993-04

DIN EN ISO 6878 (D 11) Determination of phosphorus – Ammonium molybdate photometric
2004-09 method

DIN 38405-D 13 Determination of cyanides
2011-04
Annex to the accreditation certificate D-PL-17442-01-00

DIN 38405-D 24 1987-06
Photometric determination of chromium(VI) using 1,5-diphenylcarbonohydrazide

DIN 38405-D 26 1989-04
Photometric determination of dissolved sulphide
(standard withdrawn)

DIN 38405-D 27 1992-07
Determination of readily liberated sulfphide
(standard withdrawn)

DIN 38406-E 5 1983-10
Determination of ammonia-nitrogen

1.5 Cations

1.5.1 Determination of elements using atomic absorption spectrometry (H-AAS, K-AAS) *

DIN EN 1483 (E 12) 2007-07
Determination of mercury – Method using atomic absorption spectrometry
(standard withdrawn)

DIN EN ISO 12846 (E 12) 2012-08
Water quality - Determination of mercury - Method using atomic absorption spectrometry (AAS) with and without enrichment

DIN EN 12338 (E 31) 1998-10
Determination of mercury – Methods after enrichment by amalgamation
(standard withdrawn)

1.5.2 Determination by inductively coupled plasma atomic emission spectroscopy

DIN EN ISO 11885 (E 22) 2009-09
Water quality – Determination of selected elements by inductively coupled plasma atomic emission spectroscopy (ICP-OES)

1.5.3 Determination by inductively coupled plasma mass spectrometry

DIN EN ISO 17294-2 (E 29) 2017-01
Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes
1.6 Organic parameters

1.6.1 Determination by gas chromatography with standard detectors (GC-FID, GC-ECD) *

DIN EN ISO 9377-2 (H 53) 2001-07
Water quality – Determination of hydrocarbon index – Part 2: Method using solvent extraction and gas chromatography

1.6.2 Determination by gas chromatography with mass spectrometry (GC-MS) *

DIN 38407-F 3 1998-07
Gas chromatographic determination of polychlorinated biphenyls

DIN EN ISO 10301 (F 4) 1997-08
Determination of highly volatile of halogenated hydrocarbons – Gas chromatographic methods

DIN 38407-F 9 1991-06
Determination of benzene and some of its derivatives by gas chromatography
(standard withdrawn)

1.6.3 Determination by high performance liquid chromatography: LC-UV, LC fluorescence *

DIN 38407-F 8 1995-10
Determination of 6 polycyclic aromatic hydrocarbons (PAH) in water by high performance liquid chromatography (HPLC) with fluorescence detection

1.7 Determination of gaseous components

DIN EN 25814 (G 22) 1992-11
Water quality – Determination of dissolved oxygen – electrochemical probe method

1.8 Parameters characterising effects and substances

DIN EN 1484 (H 3) 1997-08
Water analysis – Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC)

DIN EN ISO 8467 (H 5) 1995-05
Water quality – Determination of permanganate index

DIN 38409-H 7 2005-12
Determination of acid and base-neutralising capacities
Annex to the accreditation certificate D-PL-17442-01-00

DIN EN ISO 9562 (H 14)
2005-02
Water quality – Determination of adsorbable organically bound halogens (AOX)

DIN 38409-H 41
1980-12
Determination of chemical oxygen demand (COD) in the range over 15 mg/l

DIN EN 1899-1 (H 51)
1998-05
Determination of biochemical oxygen demand after n days (BODₙ) – Part 1: Dilution and seeding method with allylthiourea acid addition

DIN EN 1899-2 (H 52)
1998-05
Determination of biochemical oxygen demand after n days (BODₙ) – Part 2: Methods for undiluted samples

1.9 Microbiological methods

DIN EN ISO 6222 (K 5)
1999-07
Water quality – Enumeration of culturable micro-organisms – Colony count by inoculation in a nutrient agar culture medium

DIN EN ISO 9308-2 (K 6-1)
2014-06
Water quality - Enumeration of Escherichia coli and coliform bacteria - Part 2: Most probable number method

DIN EN ISO 16266 (K 11)
2008-05
Water quality – Detection and enumeration of Pseudomonas aeruginosa – Membrane filtration method

DIN EN ISO 9308-3 (K 13)
1999-07
Water quality – Detection and enumeration of Escherichia coli and coliform bacteria in surface water and waste water – Part 3: Miniaturised method by inoculation in liquid medium (MPN method)

DIN EN ISO 7899-1 (K 14)
1999-07
Water quality – Detection and enumeration of intestinal enterococci in surface water and waste water – Part 1: Miniaturised method by inoculation in liquid medium (MPN method)

DIN EN ISO 7899-2 (K 15)
2000-11
Water quality – Detection and enumeration of intestinal enterococci – Part 2: Membrane filtration method

DIN EN ISO 11731 (K 22)
2018-03
Water quality - Enumeration of Legionella

DIN EN ISO 14189 (K 24)
2016-11
Water quality - Enumeration of Clostridium perfringens - Method using membrane filtration

TrinkwV 2001 Annex 5.1
2001-05
Detection of Clostridium perfringens (including spores) by membrane filtration (mCP method)
Annex to the accreditation certificate D-PL-17442-01-00

IDEXX Laboratories

Detection method for enterococci
(Enterolert-DW / Quanti-Tray, alternative methods)

2 Analysis of sludge, sediments, soil, waste and materials for recycling

2.1 Sampling

LAGA PN 2/78 1983-12
Sampling and preparation of samples from solid, sludgy and liquid waste

LAGA PN 98 2001-12
Sampling and preparation of samples from solid and semi-solid waste and deposited materials

SOP 1917 2012-01
Sampling of mixed topsoil samples in accordance with the Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV)

2.2 Sample pretreatment and sample preparation

DIN 38414 S 4 1984-10
Determination of leachability with water

DIN EN 12457-4 2003-01
Characterization of waste - Leaching; Compliance test for leaching of granular waste materials and sludges - Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with limited size reduction)

DIN 19747 2009-07
Investigation of solids - Pre-treatment, preparation and processing of samples for chemical, biological and physical investigations

LAGA EW 98 2002-03
Determination of leachability with water analogous to LAGA EW 98

DIN 19528 2009-01
Leaching of solid materials - Percolation method for the joint examination of the leaching behaviour of inorganic and organic substances

DIN EN 13346 (S 7a) 2001-04
Characterisation of sludges – Determination of trace elements and phosphorus – Aqua regia extraction methods

DIN ISO 11464 2006-12
Soil quality – Pretreatment of samples for physico-chemical analysis (standard withdrawn)
2.3 Physical and physico-chemical parameters

2.3.1 Determination of ingredients by gravimetry *

DIN 38414-2 (S 2) 1985-11
Determination of water content and dry residue or dry matter
(standard withdrawn)

DIN EN 12880 (S 2a) 2001-02
Characterisation of sludges – Determination of dry residue and water content

DIN EN 12879 (S 3a) 2001-02
Characterisation of sludges – Determination of loss on ignition of dry mass
(standard withdrawn)

DIN 38414-3 (S 3a) 1985-11
Determination of loss on ignition and residue on ignition of the dry matter of a sludge
(standard withdrawn)

DIN ISO 11465 1996-12
Soil quality – Determination of dry matter and water content on a mass basis – Gravimetric method
(standard withdrawn)

DIN 18125-2 1999-08/2011-03
Soil investigation and testing - Determination of density of soil

DIN EN 15169 2007-05
Characterization of waste - Determination of loss on ignition in waste, sludge and sediments

2.3.2 Determination of pH

DIN ISO 10390 2005-12
Soil quality – Determination of pH
(standard withdrawn)
2.3.3 Determination of calorific value

DIN 51900-3
2005-01
Testing of solid and liquid fuels – Determination of gross calorific value by the bomb calorimeter and calculation of net calorific value – Part 3: Method using adiabatic jacket (deviation: here for the matrices waste and soil) (standard withdrawn)

DIN EN 15170
2009-05
Characterization of sludges - Determination of calorific value

2.3.4 Determination of flash point with closed cup *

DIN EN ISO 13736
2009-01
Determination of flash point – Abel closed-cup method (deviation: here for the matrices waste and soil) (standard withdrawn)

DIN 51755
1974-03
Testing of mineral oils and other combustible liquids; Determination of flash point in closed cup according to Abel-Pensky (deviation: here for the matrices waste and soil)

DIN EN ISO 22719
2003-09
Determination of flash point – Pensky-Martens closed cup method (deviation: here for the matrices waste and soil) (standard withdrawn)

DIN 51758
1978-01
Testing of liquid petroleum products and other combustible liquids; Determination of flash point by Pensky-Martens closed tester (deviation: here for the matrices waste and soil) (standard withdrawn)

2.4 Determination of anions

DIN ISO 11262
2012-04
Determination of total cyanide
2.5 Elements

2.5.1 Determination by atomic absorption spectroscopy

DIN EN ISO 12846 (E 12) 2012-08
Determination of mercury – Method using atomic absorption spectroscopy
(deviation for soils: extraction with aqua regia in accordance with DIN EN 13346 or DIN EN 13657: 2003-01)

2.5.2 Determination by inductively coupled plasma atomic emission spectroscopy

DIN EN ISO 11885 (E 22) 2009-07
Water quality – Determination of 33 elements by inductively coupled plasma atomic emission spectroscopy (ICP-OES)
(deviation for soils: extraction with aqua regia in accordance with DIN EN 13346 or DIN EN 13657: 2003-01)

2.5.3 Determination by inductively coupled plasma mass spectrometry

DIN EN ISO 17294-2 (E 29) 2017-01
Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes
(deviation for soils: extraction with aqua regia in accordance with DIN EN 13346 or DIN EN 13657: 2003-01)

2.6 Determination of sum parameters

DIN 38414-S 17 1989-11
Determination of the organically bound halogens amenable to purging and extraction (EOX)
(deviation for soils: Soxhlet extraction with n-hexane)

DIN 38414-S 17 2017-01
Determination of the organically bound halogens amenable to extraction (EOX)
(deviation for soils: Soxhlet extraction with n-hexane)

DIN EN 13137 2001-12
Characterisation of waste – Determination of total organic carbon (TOC) in waste, sludges and sediments

DIN 38409-H 28 1992-28
Determination of bound nitrogen; Method after reduction with Devarda's alloy and catalytic mineralisation
(deviation: here for the matrices waste and soil) (standard withdrawn)
2.7 Organic parameters

2.7.1 Determination by gas chromatography with standard detectors (GC-FID) *

DIN EN ISO 16703 Soil quality – Determination of content of hydrocarbon in the range
2011-09 or. C10 to C40 or. extractable lipophilic substances
LAGA KW/04 2009-12

DIN EN 14039 Characterisation of waste – Determination of
2005-01 hydrocarbon content in the range of C10 to C40 by gas
chromatography (here also for analysis in soils)

2.7.2 Determination by gas chromatography with mass spectrometry (GC-MS) *

DIN 38414-20 (S 20) Determination of 6 polychlorinated biphenyls (PCB)
1996-01

DIN EN 15308 Characterization of waste - Determination of selected
2016-12 polychlorinated biphenyls (PCB) in solid waste by gas
chromatography with electron capture or mass spectrometric
detection

DIN ISO 18287 Soil quality - Determination of polycyclic aromatic hydrocarbons
2006-05 (PAH) - Gas chromatographic method with mass spectrometric
detection (GC-MS)

HLUG, Handbuch Altlasten, Volume
Handbuch Altlasten, Volume 7, Part 4
2000 Determination of BTEX/LHKW in solids from brownfields
(here also for analysis in soils)

LUA Data Sheet No. 1 Determination of polycyclic aromatic hydrocarbons (PAH) in soil
1994-04 samples
3 Examination of chemical products

3.1 Determination of ingredients and additives in chemical products and mixtures (cosmetic raw materials) by gas chromatography with standard detectors (GC-FID) **

SOP 1287
2002-10
Cosmetic excipients – Determination of carbon chain distribution of fatty acids and fatty alcohols by saponification and BF3 conversion

3.2 Determination of ingredients and additives in chemical products and mixtures (cosmetic raw materials) by gas chromatography with mass spectrometry (GC-MS) **

SOP 1157
2002-09
Cosmetic excipients – Determination of fatty acids after silylation derivatisation to trimethylsilyl ester MSTFA / BSTFA, measurement with GC-MS

3.3 Determination of ingredients and additives and of residues and contaminants in chemical products and mixtures (cosmetic and pharmaceutical raw materials, excipients and additives) by high performance liquid chromatography: LC-UV, LC fluorescence **

VDI 3862 Blatt 3
2000-12
Consumer goods, gases – Measurement of aliphatic and aromatic aldehydes and ketones by DNPH method

SOP 1098
2009-04
Product testing – Liquid chromatographic determination of phenols; in particular from resorcinol in fluorescein.

SOP 1290
2002-11
Cosmetic excipients – Determination of carboxylic acid in technical formulations

SOP 1536
2004-01
Cosmetic excipients – Liquid chromatographic determination of glyceraldehyde, dihydroxyacetone and hydroxyacetone

3.4 Determination of the nitrate content in ceramic catalyst materials

SOP 1610
2009-08
Product testing - Determination of the nitrate content in ceramic catalyst materials

3.5 Qualitative determination of plastics and polymers by IR spectroscopy **

SOP 1295
2003-02
Polymers – Infrared spectroscopic analysis for the identification of solids as potassium bromide
**3.6 Determination of ingredients and additives and of residues and contaminants in chemical products and mixtures (cosmetic raw materials, chemical products) by photometry **

- **SOP 1172**
 2002-08
 Cosmetic excipients – Quantitative determination of alpha and epsilon amino groups – OPA sensitive nitrogen

- **VW Specification 3925**
 1994-09
 Measurement of formaldehyde emission from polymeric materials and components in accordance with VW Specification 3925 (acetylacetone method)

**3.7 Determination of ingredients and key figures in chemical products and mixtures (cosmetic and pharmaceutical raw materials) by titrimetric method **

- **Ph. Eur. 2.5.4**
 2003-01
 Cosmetic excipients – Iodine number as per Ph. Eur. 2.5.4 A

- **Ph. Eur. 2.5.3**
 2003-01
 Cosmetic excipients – Determination of hydroxyl number as per Ph. Eur. 2.5.3 (Method A)

- **Ph. Eur. 2.5.1**
 2003-01
 Cosmetic excipients – Acid number as per Ph. Eur. 2.5.1

- **Ph. Eur. 2.5.2**
 2003-01
 Cosmetic excipients – Ester number as per Ph. Eur. 2.5.2

- **Ph. Eur. 2.5.5**
 2003-01
 Cosmetic excipients – Peroxide number as per Ph. Eur. 2.5.5

- **Ph. Eur. 2.5.6**
 2003-01
 Cosmetic excipients – Saponification number as per Ph. Eur. 2.5.6

- **SOP 1085**
 2002-06
 Cosmetic excipients – Potentiometric determination of chloride in pharmaceutical and cosmetic raw materials and products

- **SOP 1115**
 2002-06
 Cosmetic excipients – Determination of anionic and cationic surfactants by two-phase titration
3.8 Determination of pH in chemical products and mixtures (cosmetic and pharmaceutical raw materials, excipients and additives) by potentiometry

SOP 1303 Cosmetic excipients – Determination of pH in water / oil – Emulsions
2002-11

3.9 Determination of key figures in chemical products and mixtures (cosmetic raw materials) by gravimetry *

Ph. Eur. 2.2.5/JP 2.56 Cosmetic excipients – Determination of relative density as per Ph.
2003-01 Eur. 2.2.5 or JP 2.56

3.10 Elements

3.10.1 Digestion and extraction methods for physico-chemical and chemical analysis of metals and metal compounds in chemical products **

SOP 1305 Digestion for analysis of samples containing pigment (e.g. titanium dioxide), for example for titanium determination
2002-08

VDI 2268 Blatt 1-4/ Metal contents in dust samples on quartz and glass fibre filters and DIN EN 14385 quartz wool (digestion as per VDI 2268 Blatt 1-4, analogous to DIN 1990-05/2004-05 EN 14385)
1990-05/2004-05

SOP 1900 Digestions for analysis of metal contents in samples by use of a microwave digestion system
2012-05

SOP 1181 Digestion for determination of metals in organic matrices (plastics, oils and fats, etc.)
2014-06

3.10.2 Determination of elements in chemical products and mixtures (cosmetic and pharmaceutical raw materials, excipients and additives) by inductively coupled plasma mass spectrometry **

SOP 1426 Gadolinium oxide – Determination of Sc, Ti, Y, Zr, Ce, Hf, La, Ta, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er and Tm in gadolinium oxide with ICP-MS
2003-08

DIN EN ISO 17294-2 (E 29) Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes (deviation: application to cosmetic and pharmaceutical raw materials, excipients and additives)
2017-01
3.10.3 Determination of elements in chemical products and mixtures (cosmetic and pharmaceutical raw materials, excipients and additives) by inductively coupled plasma atomic emission spectroscopy **

SOP 1427 2003-11
Gadolinium oxide – Determination of ytterbium and lutetium in gadolinium oxide with ICP-OES

DIN EN ISO 11885 (E 22) 2009-09
Determination of selected elements by inductively coupled plasma atomic emission spectroscopy (ICP-OES)
(deviation: application to cosmetic and pharmaceutical raw materials, excipients and additives)

4 Analysis of consumer goods

4.1 Digestion, extraction and migration methods for physico-chemical and chemical analysis of consumer goods **

DIN EN 71-10 2006-03
Safety of toys – Part 10: Organic chemical compounds – Sample preparation and extraction

EDQM Publication ID 2013-09
Element emission of metallic commodities with contact with foodstuffs

DIN EN 71-3 2014-12
Safety of toys – Part 3: Migration of certain elements (standard withdrawn)

SOP 1900 2012-05
Digestions for analysis of metal contents in samples by use of a microwave digestion system

SOP 1181 2014-06
Digestion for determination of metals in organic matrices (plastics, oils and fats, etc.)

4.2 Determination of residues and contaminants in food commodities (plastics, paper, wood), other commodities, packaging materials and toys by gas chromatography with mass spectrometry (GC-MS) *

ONR CEN ISO/TS 16186 2012-05
Determination of dimethyl fumarate (DMF) in commodities

AFPS GS 2014-01
Analysis of polycyclic aromatic hydrocarbons (PAHs) in accordance with ZEK-standard; and phthalate esters

ASU 82.02-8 2001-06
Determination of pentachlorophenol (PCP) and chlorophenols by GC-MS as per LFGB 82.02-8
4.3 Determination of ingredients and additives and of residues and contaminants in food commodities, commodities and toys by high performance liquid chromatography: LC-UV, LC fluorescence **

DIN EN 71-11 2006-01 Safety of toys – Part 11: Organic chemical compounds – Methods of analysis (here for determination of acrylamide and bisphenol A)

SOP 1978 1996-11 Analysis of cosmetic products in accordance with §35 LMBG (German Food and Feed Act) 84.00 24 (EC): Detection and determination of preservatives (e.g. parabens)

4.4 Determination of ingredients and additives and of residues and contaminants in food commodities (plastics, paper, wood), commodities and toys by photometry *

DIN EN ISO 17075 2017-05 Leather – Chemical determination of chromium(VI) content

ASU B 82.02-1 1985-06 Analysis of commodity goods – Determination of the release of formaldehyde from textile commodity goods

ASU B 82.02-11 2008-10 Analysis of commodity goods – Detection of chromium(VI) in commodity goods made of leather; Photometric method

4.5 Determination of pH in commodities by potentiometry *

DIN EN ISO 4045 2008-05 Leather – Chemical tests – Determination of pH

ASU B 82.02-12 2011-12 Analysis of commodity goods – Determination of the pH value of leather; Chemical test
4.6 Determination of ingredients and additives and of residues and contaminants in commodities, migration solutions and toys by inductively coupled plasma mass spectrometry *

DIN EN ISO 17294-2 (E 29)
2017-01

Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes
(deviation: application to commodities, migration solutions and toys)

4.7 Determination of elements in commodities, migration solutions and toys by inductively coupled plasma atomic emission spectroscopy *

DIN EN ISO 11885 (E 22)
2009-09

Water quality – Determination of selected elements by inductively coupled plasma atomic emission spectroscopy (ICP-OES)
(deviation: application to commodities, migration solutions and toys)

4.8 Determination of migrating additives and contaminants in plastics with food contact by gravimetry *

Regulation (EC) 10/2011
Annex V, Section 3.3
2011-10

Determination of overall migration in aqueous simulants in accordance with Regulation (EC) 10/2011
5 Test methods in accordance with the Drinking Water Ordinance – TrinkwV –

Sampling

<table>
<thead>
<tr>
<th>Method</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN ISO 5667-5 (A 14) 2011-02</td>
<td>Water quality - Sampling - Part 5: Guidance on sampling of drinking water from treatment works and piped distribution systems</td>
</tr>
<tr>
<td>DIN EN ISO 5667-3 (A 21) 2013-03</td>
<td>Water quality - Sampling - Part 3: Preservation and handling of water samples</td>
</tr>
<tr>
<td>DIN EN ISO 19458 (K19) 2006-12</td>
<td>Water quality - Sampling for microbiological analysis</td>
</tr>
</tbody>
</table>

ANNEX 1: MICROBIOLOGICAL PARAMETERS

PART I: General requirements for drinking water

<table>
<thead>
<tr>
<th>Seq no.</th>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Escherichia coli (E. coli)</td>
<td>DIN EN ISO 9308-2 (K 6-1) 2014-06</td>
</tr>
<tr>
<td>2</td>
<td>Enterococci</td>
<td>DIN EN ISO 7899-2 (K 15) 2000-11, Enterolert®-DW/Quanti-Tray</td>
</tr>
</tbody>
</table>

PART II: Requirements for drinking water intended for transfer in sealed containers

<table>
<thead>
<tr>
<th>Seq no.</th>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Escherichia coli (E. coli)</td>
<td>DIN EN ISO 9308-2 (K 6-1) 2014-06</td>
</tr>
<tr>
<td>2</td>
<td>Enterococci</td>
<td>DIN EN ISO 7899-2 (K 15) 2000-11, Enterolert®-DW/Quanti-Tray</td>
</tr>
<tr>
<td>3</td>
<td>Pseudomonas aeruginosa</td>
<td>DIN EN ISO 16266 (K 11) 2008-05</td>
</tr>
</tbody>
</table>

ANNEX 2: CHEMICAL PARAMETERS

PART I: Chemical parameters whose concentration does not usually increase in the distribution network, including the drinking water installation

<table>
<thead>
<tr>
<th>Seq no.</th>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acrylamide</td>
<td>Not used</td>
</tr>
<tr>
<td>2</td>
<td>Benzene</td>
<td>DIN 38407-F9 1991-05(withdrawn method)</td>
</tr>
<tr>
<td>3</td>
<td>Boron</td>
<td>DIN EN ISO 11885 (E22) 2009-09</td>
</tr>
<tr>
<td>4</td>
<td>Bromate</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>Chromium</td>
<td>DIN EN ISO 17294-2 (E 29) 2017-01</td>
</tr>
<tr>
<td>6</td>
<td>Cyanide</td>
<td>DIN 38405-D 13 2011-04</td>
</tr>
<tr>
<td>7</td>
<td>1,2-dichloroethane</td>
<td>DIN EN ISO 10301 (F4) 1997-08</td>
</tr>
<tr>
<td>8</td>
<td>Fluoride</td>
<td>DIN 38405 D4 1985-07</td>
</tr>
<tr>
<td>9</td>
<td>Nitrate</td>
<td>DIN EN ISO 10304-1 (D 20)2009-07</td>
</tr>
<tr>
<td>10</td>
<td>Plant protection product active ingredients and biocidal product active ingredients</td>
<td>Not used</td>
</tr>
<tr>
<td>Seq no.</td>
<td>Parameter</td>
<td>Method</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>Plant protection product active ingredients and biocidal product active ingredients total</td>
<td>Not used</td>
</tr>
<tr>
<td>12</td>
<td>Mercury</td>
<td>DIN EN ISO 12846 (E 12) 2012-08</td>
</tr>
<tr>
<td>13</td>
<td>Selenium</td>
<td>DIN 38406 E29 1999-05</td>
</tr>
<tr>
<td>14</td>
<td>Tetrachloroethene and trichloroethylene</td>
<td>DIN EN ISO 10301 (F4) 1997-08</td>
</tr>
<tr>
<td>15</td>
<td>Uranium</td>
<td>DIN EN ISO 17294-2 (E 29) 2017-01</td>
</tr>
</tbody>
</table>

PART II: Chemical parameters whose concentration may increase in the distribution network, including the drinking water installation

<table>
<thead>
<tr>
<th>Seq no.</th>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Antimony</td>
<td>DIN EN ISO 17294-2 (E 29) 2017-01</td>
</tr>
<tr>
<td>2</td>
<td>Arsenic</td>
<td>DIN EN ISO 17294-2 (E 29) 2017-01</td>
</tr>
<tr>
<td>3</td>
<td>Benzo[a]pyrene</td>
<td>DIN EN ISO 17993 (F18) 2004-03</td>
</tr>
<tr>
<td>4</td>
<td>Lead</td>
<td>DIN EN ISO 17294-2 (E 29) 2017-01</td>
</tr>
<tr>
<td>5</td>
<td>Cadmium</td>
<td>DIN EN ISO 17294-2 (E 29) 2017-01</td>
</tr>
<tr>
<td>6</td>
<td>Epichlorohydrin</td>
<td>DIN EN ISO 17294-2 (E 29) 2017-01</td>
</tr>
<tr>
<td>7</td>
<td>Copper</td>
<td>DIN EN ISO 17294-2 (E 29) 2017-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIN EN ISO 11885 (E 22) 2009-09</td>
</tr>
<tr>
<td>8</td>
<td>Nickel</td>
<td>DIN EN ISO 17294-2 (E 29) 2017-01</td>
</tr>
<tr>
<td>9</td>
<td>Nitrite</td>
<td>DIN EN ISO 10304-1 (D 20) 2009-07</td>
</tr>
<tr>
<td>10</td>
<td>Polycyclic aromatic hydrocarbons</td>
<td>DIN EN ISO 17993 (F18) 2004-03</td>
</tr>
<tr>
<td>11</td>
<td>Trihalomethanes</td>
<td>DIN EN ISO 10301 (F4) 1997-08</td>
</tr>
<tr>
<td>12</td>
<td>Vinyl chloride</td>
<td>Not used</td>
</tr>
</tbody>
</table>

ANNEX 3: INDICATOR PARAMETERS

Part I: General indicator parameters

<table>
<thead>
<tr>
<th>Seq no.</th>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aluminium</td>
<td>DIN EN ISO 17294-2 (E 29) 2017-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIN EN ISO 11885 (E 22) 2009-09</td>
</tr>
<tr>
<td>2</td>
<td>Ammonia</td>
<td>DIN 38406 -E5 1983-10</td>
</tr>
<tr>
<td>3</td>
<td>Chloride</td>
<td>DIN ISO 10304-1 (D20) 2009-07</td>
</tr>
<tr>
<td>4</td>
<td>Clostridium perfringens (including spores)</td>
<td>DIN EN ISO 14189 (K 24) 2016-11</td>
</tr>
<tr>
<td>5</td>
<td>Coliform bacteria</td>
<td>DIN EN ISO 9308-2 (K 6-1) 2014-06</td>
</tr>
<tr>
<td>6</td>
<td>Iron</td>
<td>DIN EN ISO 11885 (E 22) 2009-09</td>
</tr>
<tr>
<td>7</td>
<td>Colouring (spectral absorption coefficient Hg 436 nm)</td>
<td>DIN EN ISO 7887 (C 1) 2012-04</td>
</tr>
<tr>
<td>8</td>
<td>Odour</td>
<td>DIN EN 1622 (B 3) 2006-10</td>
</tr>
<tr>
<td>9</td>
<td>Taste</td>
<td>DIN EN 1622 (B 3) 2006-10</td>
</tr>
</tbody>
</table>
Annex to the accreditation certificate D-PL-17442-01-00

<table>
<thead>
<tr>
<th>Seq no.</th>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Colony count at 22 °C</td>
<td>DIN EN ISO 6222 (K5) 1999-07</td>
</tr>
<tr>
<td>11</td>
<td>Colony count at 36 °C</td>
<td>DIN EN ISO 6222 (K5) 1999-07</td>
</tr>
<tr>
<td>12</td>
<td>Electrical conductivity</td>
<td>DIN EN 27888 (C8) 1993-11</td>
</tr>
<tr>
<td>13</td>
<td>Manganese</td>
<td>DIN ISO 17294-2 (E 29) 2017-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIN ISO 11885 (E 22) 2009-09</td>
</tr>
<tr>
<td>14</td>
<td>Sodium</td>
<td>DIN ISO 11885 (E 22) 2009-09</td>
</tr>
<tr>
<td>15</td>
<td>Organically bound carbon (TOC)</td>
<td>DIN EN 1484 (H3) 1997-08</td>
</tr>
<tr>
<td>16</td>
<td>Oxidisability</td>
<td>DIN EN ISO 8467 (H5) 1995-05</td>
</tr>
<tr>
<td>17</td>
<td>Sulphate</td>
<td>DIN EN ISO 10304-1 (D 20) 2009-07</td>
</tr>
<tr>
<td>18</td>
<td>Turbidity</td>
<td>DIN EN ISO 7027 (C2) 2000-04</td>
</tr>
<tr>
<td>19</td>
<td>Hydrogen ion concentration</td>
<td>DIN EN ISO 10523 (C 5) 2012-04</td>
</tr>
<tr>
<td>20</td>
<td>Calcite dissolving capacity</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Part II: Specific requirements for drinking water in systems in the drinking water installation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legionella spec.</td>
<td>ISO 11731 1998-05 (zurückgezogene Norm);</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11731-2 (K 22) 2008-06;</td>
</tr>
<tr>
<td></td>
<td>UBA Empfehlung 2012-08</td>
</tr>
<tr>
<td></td>
<td>useable until 28.02.2019</td>
</tr>
</tbody>
</table>

ANNEX 3a: Requirements for drinking water in relation to radioactive substances

Not used

Parameters not included in Annexes 1 to 3 of the 2011 Drinking Water Ordinance

Additional periodic testing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>DIN EN ISO 11885 (E 22) 2009-09</td>
</tr>
<tr>
<td>Potassium</td>
<td>DIN EN ISO 11885 (E 22) 2009-09</td>
</tr>
<tr>
<td>Magnesium</td>
<td>DIN EN ISO 11885 (E 22) 2009-09</td>
</tr>
<tr>
<td>Acid capacity</td>
<td>DIN 38409-H 7 2005-12</td>
</tr>
<tr>
<td>phosphate</td>
<td>DIN EN ISO 11885 (E 22) 2009-09</td>
</tr>
</tbody>
</table>

The accreditation does not replace the recognition or approval procedure of the competent authority pursuant to § 15 (4) TrinkwV.
6 Analysis of water according to the German Ordinance on evaporative cooling systems, cooling towers and wet separators (42nd BImSchV)

<table>
<thead>
<tr>
<th>Method</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN EN ISO 19458 (K 19) 2006-12</td>
<td>Water quality - Sampling for microbiological analysis</td>
</tr>
<tr>
<td></td>
<td>Position of the German Environment Agency (UBA) – Umweltbundesamt) on the sampling and detection of legionella in evaporative cooling systems, cooling towers and wet separators of 02.06.2017, section C and D</td>
</tr>
</tbody>
</table>

Microbiological investigations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legionella</td>
<td>ISO 11731 2017-05</td>
</tr>
<tr>
<td></td>
<td>Position of the German Environment Agency (UBA) – Umweltbundesamt) on the sampling and detection of legionella in evaporative cooling systems, cooling towers and wet separators of 02.06.2017, section E and F taking into account attachment 1 and 2</td>
</tr>
<tr>
<td>Colony count at 22 °C and 36 °C</td>
<td>DIN EN ISO 6222 (K 5) 1999-07</td>
</tr>
</tbody>
</table>

7 Test method list for SPECIALIST MODULE FOR WASTE

(Revised: LAGA, August 2012)

Test area 1: Sewage sludge
Not used

Test area 2: Base
Not used

Test area 3: Biowaste
Not used

Test area 4: Waste oil, insulating liquid
Not used
Test area 5: Waste for deposition

<table>
<thead>
<tr>
<th>Sections/Parameter</th>
<th>Basis/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Sampling, sample preparation</td>
<td>§ 8 (1, 3) and 5 DepV</td>
</tr>
<tr>
<td>5.2 Sample preparation, general parameters</td>
<td>Annex 4 No. 3 DepV</td>
</tr>
<tr>
<td>Digestion method (aqua regia)</td>
<td>DIN EN 13657 (01.03)</td>
</tr>
<tr>
<td>Preparation of eluates/percolates</td>
<td>Annex 4 No. 3.2.1 and 3.2.2 DepV</td>
</tr>
<tr>
<td>pH value of eluate</td>
<td>DIN 38404-5 (07.09)</td>
</tr>
<tr>
<td>Conductivity of eluate</td>
<td>DIN EN 27888 (C 8) (11.93)</td>
</tr>
<tr>
<td>Total dissolved solids</td>
<td>DIN EN 15216 (01.08)</td>
</tr>
<tr>
<td></td>
<td>DIN 38409-H 1 (01.87)</td>
</tr>
<tr>
<td></td>
<td>DIN 38409-H 2 (03.87)</td>
</tr>
<tr>
<td>Loss on ignition</td>
<td>DIN EN 15169 (05.07)</td>
</tr>
<tr>
<td>Cyanides, readily liberated (from eluate)</td>
<td>DIN 38405-14 (12.88)</td>
</tr>
<tr>
<td></td>
<td>DIN 38405-D 13 (04.11)</td>
</tr>
<tr>
<td></td>
<td>In waste containing sulphide: DIN ISO 17380 (05.06)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 14403 (D 6) (07.02)</td>
</tr>
<tr>
<td>Fluoride (from eluate)</td>
<td>DIN 38405-D 4 (07.85)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 10304-1 (D 20) (07.09)</td>
</tr>
<tr>
<td>Chloride (from eluate)</td>
<td>DIN EN ISO 10304-1 (D 20) (07.09)</td>
</tr>
<tr>
<td></td>
<td>DIN 38405-D 5 (12.85)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 15682 (D 31) (01.02)</td>
</tr>
<tr>
<td>Sulphate (from eluate)</td>
<td>DIN EN ISO 10304-1 (D 20) (07.09)</td>
</tr>
<tr>
<td></td>
<td>DIN 38405-D 5 (01.85)</td>
</tr>
<tr>
<td>Density</td>
<td>DIN 18125-2 (08.99)</td>
</tr>
<tr>
<td></td>
<td>DIN 18125-2 (03.11)</td>
</tr>
<tr>
<td>Gross calorific value</td>
<td>DIN EN 15170 (05.09)</td>
</tr>
<tr>
<td>Elements</td>
<td>Annex 4 No. 3 DepV</td>
</tr>
<tr>
<td>Cadmium, chromium, copper, nickel, lead and zinc</td>
<td>DIN ISO 11047 (05.03)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td></td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td>Mercury</td>
<td>DIN EN 1483 (E 12) (07.07)</td>
</tr>
<tr>
<td></td>
<td>DIN EN 12338 (E 31) (10.98)</td>
</tr>
<tr>
<td>Sections/Parameter</td>
<td>Basis/Method</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Arsenic (from eluate)</td>
<td>DIN EN ISO 17852 (E 35) (04.08)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11969 (D 18) (11.96)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td></td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 15586 (E 4) (02.04)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 17294-2 (E 29) (02.05)</td>
</tr>
<tr>
<td>Lead (from eluate)</td>
<td>DIN EN ISO 15586 (E 4) (02.04)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 17294-2 (E 29) (02.05)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td></td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td>Cadmium (from eluate)</td>
<td>DIN EN ISO 15586 (E 4) (02.04)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 17294-2 (E 29) (02.05)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td></td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td>Copper (from eluate)</td>
<td>DIN EN ISO 15586 (E 4) (02.04)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 17294-2 (E 29) (02.05)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td></td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td>Nickel (from eluate)</td>
<td>DIN EN ISO 15586 (E 4) (02.04)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 17294-2 (E 29) (02.05)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td></td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td>Mercury (from eluate)</td>
<td>DIN EN 1483 (E 12) (07.07)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 17852 (E 35) (04.08)</td>
</tr>
<tr>
<td>Zinc (from eluate)</td>
<td>DIN EN ISO 15586 (E 4) (02.04)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 17294-2 (E 29) (02.05)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td></td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td>Barium (from eluate)</td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td>Chromium, total (from eluate)</td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td>Molybdenum (from eluate)</td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td>Sections/Parameter</td>
<td>Basis/Method</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Antimony (from eluate)</td>
<td>DIN EN ISO 17294-2 (E 29) (02.05)</td>
</tr>
<tr>
<td></td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 15586 (E 4) (02.04)</td>
</tr>
<tr>
<td></td>
<td>DIN 38405-E 32 (05.00)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 17294-2 (E 29) (02.05)</td>
</tr>
<tr>
<td>Selenium (from eluate)</td>
<td>DIN ISO 22036 (06.09)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 11885 (E 22) (09.09)</td>
</tr>
<tr>
<td></td>
<td>DIN EN ISO 17294-2 (E 29) (02.05)</td>
</tr>
</tbody>
</table>

5.4 Group and sum parameters

- **Total organic carbon (TOC)**
 - DIN EN ISO 17294-2 (E 29) (02.05)
 - DIN EN 13137 (12.01)

- **Dissolved organic carbon (DOC)**
 - DIN EN 1484 (H 3) (08.97)
 - DIN EN 14039 (01.05) in conjunction with LAGA KW/04 (12.09)

- **Extractable lipophilic substances in original substance**
 - LAGA KW/04 (12.09)

- **Phenols (from eluate)**
 - DIN EN ISO 14402 (H 37) (12.99)
 - DIN 38409-H 16 (06.84)

- **Petroleum hydrocarbons**
 - DIN EN 14039 (01.05) in conjunction with LAGA KW/04 (12.09)

5.5 Individual organic substances

- **Polycyclic aromatic hydrocarbons (PAH)**
 - DIN ISO 18287 (05.06)

- **Benzene and derivatives (BTEX)**
 - DIN 38407-F 9 (05.91)
 - Handbuch Altlasten HLUG, Volume 7 Part 4 (08.00)

- **Polychlorinated biphenyls (PCB)**
 - DIN EN 15308 (05.08)

5.6 Biodegradability

- **Breathability over 4 days (AT₄)**
 - Annex 4 No. 3.3.1 DepV

- **Gas formation rate in fermentation test over 21 days (GB₂₁)**
 - Annex 4 No. 3.3.2 DepV

Test area 6: Wood waste

Not used
Abbreviations used:

AbfKlärV German Sewage Sludge Ordinance
ASU Amtliche Sammlung von Untersuchungsverfahren (Official Collection of Test Methods) on the basis of § 64 LFGB (German Food and Feed Act)
CEN European Committee for Standardisation
DIN Deutsches Institut für Normung e.V. (German Institute for Standardisation)
EN European standard
HLUG Hessisches Landesamt für Umwelt und Geologie (Hessian Agency for Nature Conservation, Environment and Geology)
IDEXX IDEXX Laboratories, Inc.
ISO International Organisation for Standardisation
JP Japanese Pharmacopoeia
LAGA Länderarbeitsgemeinschaft Abfall (Regional Working Group on Waste)
LUA Landesumweltamt Nordrhein-Westfalen (State Environment Office North Rhine-Westphalia)
ONR Rules of the Austrian Standards Institute
Ph. EUR European Pharmacopoeia
SOP nnnn In-house method
TS Technical specification
TrinkwV German Drinking Water Ordinance
VDI Verein Deutscher Ingenieure (Association of German Engineers)
VW Volkswagen AG
ZEK Zentraler Erfahrungsaustauschkreis (Central Experience Exchange Group)